organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(Benzenesulfonamido)pyridinium perchlorate

Xun Li,^{a,b}* Dan Xie,^a Zhi-Hong Xiao^b and Chang-Zhu Li^b

^aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, and ^bHunan Provincial Research Center of Biodiesel Engineering and Technology, Changsha 410004, People's Republic of China

Correspondence e-mail: lixun0806@yahoo.com.cn

Received 10 May 2009; accepted 20 May 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.092; data-to-parameter ratio = 15.4.

In the title compound, $C_{11}H_{11}N_2O_2S^+ \cdot ClO_4^-$, the dihedral angle between the benzene and pyridinium rings is 87.33 (10)°. An intramolecular N-H···O interaction, with an S=Obonded O atom as receptor, occurs in the cation. In the crystal structure, ion pairs occur, being linked by strong N-H···O hydrogen bonds. The perchlorate anion plays a further role in the molecular packing by accepting several weak C-H···O interactions.

Related literature

For the synthesis, see: Li, Yang *et al.* (2008). For a related structure containing the same cation, see: Li & Li (2009). For related structures, see: Li *et al.* (2008*a*,*b*). For applications of pyridinium salts, see: Li *et al.* (2007); Li, Fan *et al.* (2008); Miyashita *et al.* (1977); Ganeshpure *et al.* (2007).

Experimental

Crystal data $C_{11}H_{11}N_2O_2S^+ \cdot CIO_4^ M_r = 334.73$ Triclinic, $P\overline{1}$ a = 5.6594 (11) Å

b = 7.5996 (15) Å c = 16.157 (3) Å $\alpha = 83.21 (3)^{\circ}$ $\beta = 83.70 (3)^{\circ}$ $\gamma = 73.84 (3)^{\circ}$ $V = 660.6 (2) \text{ Å}^{3}$ Z = 2Mo $K\alpha$ radiation

Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{min} = 0.911, T_{max} = 0.963$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.092$ S = 1.073051 reflections 198 parameters 5339 measured reflections 3051 independent reflections 2473 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$

 $\mu = 0.48 \text{ mm}^{-1}$

 $0.20 \times 0.10 \times 0.08 \text{ mm}$

T = 113 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.32$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1$	0.82 (2)	2.01 (2)	2.694 (2)	141 (2)
$N2-H2A\cdots O4$	0.81(2)	2.02(2)	2.808 (2)	165 (2)
$C1 - H1 \cdots O3^{i}$	0.95	2.37	3.301 (3)	166
C3−H3···O5 ⁱⁱ	0.95	2.44	3.303 (3)	151
C7−H7···O4 ⁱⁱⁱ	0.95	2.53	3.417 (2)	156
C8−H8···O3 ⁱⁱⁱ	0.95	2.58	3.251 (3)	128

Symmetry codes: (i) x + 1, y + 1, z; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2972).

References

- Ganeshpure, P. A. & Das, J. (2007). React. Kin. Catal. Lett. 92, 69-74.
- Li, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. pp. 350–352.
- Li, J. S., Fan, M. L., Fan, X. P., Huang, P. M. & Chen, L. G. (2008). Chin. J. Org. Chem. 28, 1954–1958.
- Li, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008a). Acta Cryst. E64, 01459.
- Li, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008b). Acta Cryst. E64, o1513.
- Li, J.-S. & Li, X. (2009). Acta Cryst. E65, o1228.
- Li, J.-S., Yang, D.-W. & Liu, W.-D. (2008). Acta Cryst. E64, o204.
- Miyashita, M., Yoshikoshi, A. & Grieco, P. A. (1977). J. Org. Chem. 42, 3772– 3774.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o1430 [doi:10.1107/S1600536809019205]

2-(Benzenesulfonamido)pyridinium perchlorate

X. Li, D. Xie, Z.-H. Xiao and C.-Z. Li

Comment

Organic pyridinium salts have been used as not only supramolecular guests (Li *et al.*, 2007; Li, Fan, Fan *et al.*, 2008), but also catalysts and/or media for esterification (Ganeshpure *et al.*2007; Miyashita *et al.* 1977). To seek a new pyridinium catalyst for biodiesel transformation, the title compound, (I), was synthesized and further determined by X-ray diffraction.

The title compound, (I), consists of a pyridinium cation and a perchlorate anion (Fig. 1). In the cation, the distance [1.383 (2) Å] between the pyridinum C atom and its connected amino N atom is slightly longer than the nitrate [1.378 (2) Å] (Li *et al.* 2009), also showing some conjugation of amino group with pyridinium ring. The benzene ring constructs an angle of 87.33 (10)° with the pyridinium ring, similar to the nitrate [87.59 (8)°]. The cation structure is stabilized by an intramolecular N—H…O hydrogen bond (Table 1), with S=O oxygen as H-bonding receptor, different from by C—H…O interaction in the nitrate.

Like the nitrate, in the crystal structure, a strong N—H···O hydrogen bond link the cation and anion (Table 1). The anion ClO₄ plays a great important role in the molecular packing *via* weak C—H···O interactions (Table 1).

Experimental

The title compound was prepared according to the reported literature (Li, Yang *et al.* 2008). Colourless needles of (I) were obtained by evaporation of a perchloric acid solution of the sulfonamide.

Refinement

The H atoms bound to C were positioned geometrically (C—H = 0.95 Å)and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$]. The N—H hydrogen atoms were refined with their isotropic displacement parameters, and N—H distances are restrained to 0.82 (2) and 0.81 (2) Å, respectively.

Figures

Fig. 1. View of the molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radius. Dashed lines indicate hydrogen bonds.

2-(Benzenesulfonamido)pyridinium perchlorate

Crystal data

$C_{11}H_{11}N_2O_2S^+ \cdot ClO_4^-$	Z = 2
$M_r = 334.73$	$F_{000} = 344$
Triclinic, P1	$D_{\rm x} = 1.683 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.6594 (11) Å	Cell parameters from 2172 reflections
b = 7.5996 (15) Å	$\theta = 2.8 - 27.9^{\circ}$
c = 16.157 (3) Å	$\mu = 0.48 \text{ mm}^{-1}$
$\alpha = 83.21 \ (3)^{\circ}$	<i>T</i> = 113 K
$\beta = 83.70 \ (3)^{\circ}$	Needle, colourless
$\gamma = 73.84 \ (3)^{\circ}$	$0.20 \times 0.10 \times 0.08 \ mm$
$V = 660.6 (2) \text{ Å}^3$	

Data collection

Rigaku Saturn CCD diffractometer	3051 independent reflections
Radiation source: rotating anode	2473 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.024$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{max} = 27.9^{\circ}$
T = 113 K	$\theta_{\min} = 2.8^{\circ}$
ω and ϕ scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -7 \rightarrow 9$
$T_{\min} = 0.911, \ T_{\max} = 0.963$	$l = -19 \rightarrow 21$
5339 measured reflections	

Refinement

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.034$

 $wR(F^2) = 0.092$

S = 1.07

3051 reflections

198 parameters

Primary atom site location: structure-invariant direct Exmethods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0383P)^2 + 0.3333P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.42$ e Å⁻³

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.22811 (8)	0.24398 (6)	0.16564 (3)	0.01285 (12)
01	0.3752 (3)	0.36817 (19)	0.13565 (8)	0.0188 (3)
O2	-0.0260 (2)	0.2927 (2)	0.14890 (8)	0.0195 (3)
N1	0.5339 (3)	0.3703 (2)	0.28668 (10)	0.0146 (3)
N2	0.2351 (3)	0.2162 (2)	0.26820 (9)	0.0142 (3)
C1	0.6774 (3)	0.4261 (3)	0.33434 (12)	0.0178 (4)
H1	0.7775	0.5030	0.3096	0.021*
C2	0.6782 (4)	0.3717 (3)	0.41768 (12)	0.0202 (4)
H2	0.7815	0.4072	0.4513	0.024*
C3	0.5244 (4)	0.2628 (3)	0.45284 (12)	0.0214 (4)
Н3	0.5208	0.2255	0.5111	0.026*
C4	0.3781 (4)	0.2091 (3)	0.40365 (11)	0.0167 (4)
H4	0.2729	0.1353	0.4276	0.020*
C5	0.3861 (3)	0.2644 (3)	0.31822 (11)	0.0133 (4)
C6	0.3713 (3)	0.0251 (2)	0.13242 (11)	0.0122 (3)
C7	0.6069 (3)	-0.0679 (3)	0.15558 (11)	0.0167 (4)
H7	0.6874	-0.0172	0.1915	0.020*
C8	0.7216 (4)	-0.2369 (3)	0.12480 (11)	0.0185 (4)
H8	0.8823	-0.3031	0.1397	0.022*
C9	0.6018 (4)	-0.3089 (3)	0.07244 (12)	0.0179 (4)
Н9	0.6818	-0.4241	0.0514	0.021*
C10	0.3665 (4)	-0.2150 (3)	0.05020 (12)	0.0193 (4)
H10	0.2865	-0.2659	0.0142	0.023*
C11	0.2487 (3)	-0.0472 (3)	0.08060 (11)	0.0157 (4)
H11	0.0869	0.0175	0.0663	0.019*
H1A	0.536 (4)	0.398 (3)	0.2358 (15)	0.022 (6)*
H2A	0.152 (4)	0.150 (3)	0.2905 (14)	0.019 (6)*
Cl1	0.06395 (8)	-0.20083 (6)	0.34300 (3)	0.01538 (12)
03	0.0680 (3)	-0.3209 (2)	0.28027 (10)	0.0267 (3)
O4	-0.0763 (2)	-0.01507 (19)	0.31513 (9)	0.0209 (3)
05	0.3112 (3)	-0.1954 (2)	0.35352 (9)	0.0243 (3)
O6	-0.0508 (3)	-0.2619 (3)	0.42029 (10)	0.0415 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0155 (2)	0.0101 (2)	0.0123 (2)	-0.00192 (17)	-0.00278 (15)	-0.00055 (15)
01	0.0296 (8)	0.0140 (7)	0.0144 (6)	-0.0102 (6)	-0.0003 (5)	0.0011 (5)
O2	0.0169 (7)	0.0168 (7)	0.0220 (7)	0.0020 (6)	-0.0067 (5)	-0.0018 (5)
N1	0.0152 (8)	0.0138 (8)	0.0152 (8)	-0.0041 (6)	-0.0009 (6)	-0.0024 (6)
N2	0.0156 (8)	0.0148 (8)	0.0139 (7)	-0.0075 (7)	0.0006 (6)	-0.0008 (6)
C1	0.0127 (9)	0.0145 (10)	0.0268 (10)	-0.0023 (7)	-0.0014 (7)	-0.0081 (8)
C2	0.0169 (9)	0.0203 (10)	0.0245 (10)	-0.0014 (8)	-0.0065 (7)	-0.0104 (8)
C3	0.0230 (10)	0.0221 (11)	0.0165 (9)	0.0006 (9)	-0.0036 (7)	-0.0052 (8)
C4	0.0190 (9)	0.0148 (10)	0.0152 (8)	-0.0032 (8)	0.0002 (7)	-0.0017 (7)
C5	0.0122 (8)	0.0097 (9)	0.0166 (8)	0.0003 (7)	-0.0012 (6)	-0.0029 (7)
C6	0.0149 (9)	0.0099 (9)	0.0119 (8)	-0.0035 (7)	-0.0007 (6)	-0.0004 (6)
C7	0.0171 (9)	0.0160 (10)	0.0173 (9)	-0.0032 (8)	-0.0056 (7)	-0.0020 (7)
C8	0.0179 (9)	0.0169 (10)	0.0170 (9)	0.0010 (8)	-0.0017 (7)	-0.0002 (7)
C9	0.0246 (10)	0.0108 (9)	0.0171 (9)	-0.0043 (8)	0.0017 (7)	-0.0009 (7)
C10	0.0241 (10)	0.0181 (10)	0.0187 (9)	-0.0088 (8)	-0.0029 (7)	-0.0049 (7)
C11	0.0152 (9)	0.0167 (10)	0.0159 (8)	-0.0051 (8)	-0.0032 (7)	-0.0005 (7)
Cl1	0.0175 (2)	0.0130 (2)	0.0159 (2)	-0.00511 (18)	-0.00268 (16)	0.00102 (16)
O3	0.0278 (8)	0.0179 (8)	0.0367 (8)	-0.0036 (7)	-0.0096 (6)	-0.0113 (6)
O4	0.0163 (7)	0.0104 (7)	0.0344 (8)	-0.0002 (6)	-0.0049 (6)	-0.0012 (6)
O5	0.0179 (7)	0.0235 (8)	0.0331 (8)	-0.0049 (6)	-0.0116 (6)	-0.0018 (6)
O6	0.0476 (11)	0.0515 (12)	0.0251 (8)	-0.0225 (10)	0.0047 (7)	0.0133 (8)

Geometric parameters (Å, °)

S1—O2	1.4296 (14)	C4—H4	0.9500
S1—O1	1.4352 (15)	C6—C11	1.391 (3)
S1—N2	1.6488 (16)	C6—C7	1.393 (3)
S1—C6	1.7540 (19)	C7—C8	1.391 (3)
N1—C5	1.338 (2)	С7—Н7	0.9500
N1—C1	1.356 (2)	C8—C9	1.384 (3)
N1—H1A	0.82 (2)	С8—Н8	0.9500
N2—C5	1.383 (2)	C9—C10	1.388 (3)
N2—H2A	0.81 (2)	С9—Н9	0.9500
C1—C2	1.361 (3)	C10—C11	1.384 (3)
С1—Н1	0.9500	С10—Н10	0.9500
C2—C3	1.395 (3)	C11—H11	0.9500
C2—H2	0.9500	Cl1—O6	1.4315 (16)
C3—C4	1.376 (3)	Cl1—O3	1.4358 (15)
С3—Н3	0.9500	Cl1—O5	1.4403 (15)
C4—C5	1.394 (2)	Cl1—O4	1.4594 (15)
O2—S1—O1	119.45 (9)	N2—C5—C4	119.97 (17)
O2—S1—N2	106.71 (9)	C11—C6—C7	121.88 (18)
O1—S1—N2	106.24 (9)	C11—C6—S1	118.51 (14)
O2—S1—C6	108.52 (9)	C7—C6—S1	119.56 (14)

O1—S1—C6	110.07 (9)	C8—C7—C6	118.41 (18)
N2—S1—C6	104.81 (9)	С8—С7—Н7	120.8
C5—N1—C1	122.75 (17)	С6—С7—Н7	120.8
C5—N1—H1A	116.0 (17)	C9—C8—C7	120.05 (18)
C1—N1—H1A	121.3 (17)	С9—С8—Н8	120.0
C5—N2—S1	129.79 (14)	С7—С8—Н8	120.0
C5—N2—H2A	116.6 (16)	C8—C9—C10	120.91 (19)
S1—N2—H2A	112.8 (16)	С8—С9—Н9	119.5
N1—C1—C2	119.98 (19)	С10—С9—Н9	119.5
N1—C1—H1	120.0	C11—C10—C9	119.91 (18)
C2	120.0	C11—C10—H10	120.0
C1—C2—C3	118.80 (18)	C9—C10—H10	120.0
C1—C2—H2	120.6	C10—C11—C6	118.83 (18)
С3—С2—Н2	120.6	C10—C11—H11	120.6
C4—C3—C2	120.39 (18)	C6—C11—H11	120.6
С4—С3—Н3	119.8	O6—Cl1—O3	109.89 (11)
С2—С3—Н3	119.8	O6—Cl1—O5	110.65 (10)
C3—C4—C5	119.16 (19)	O3—Cl1—O5	110.12 (10)
C3—C4—H4	120.4	O6—Cl1—O4	109.52 (11)
C5—C4—H4	120.4	O3—Cl1—O4	108.72 (9)
N1—C5—N2	121.08 (16)	O5-Cl1-O4	107.89 (9)
N1—C5—C4	118.89 (17)		
O2—S1—N2—C5	-141.28 (17)	O1—S1—C6—C11	-118.07 (15)
O1—S1—N2—C5	-12.81 (19)	N2—S1—C6—C11	128.06 (15)
C6—S1—N2—C5	103.73 (18)	O2—S1—C6—C7	-168.22 (15)
C5—N1—C1—C2	1.1 (3)	O1—S1—C6—C7	59.37 (17)
N1—C1—C2—C3	-1.7 (3)	N2—S1—C6—C7	-54.50 (17)
C1—C2—C3—C4	1.1 (3)	C11—C6—C7—C8	0.7 (3)
C2—C3—C4—C5	0.2 (3)	S1—C6—C7—C8	-176.66 (14)
C1—N1—C5—N2	177.48 (17)	C6—C7—C8—C9	0.0 (3)
C1—N1—C5—C4	0.2 (3)	C7—C8—C9—C10	-0.3 (3)
S1—N2—C5—N1	9.9 (3)	C8—C9—C10—C11	-0.1 (3)
S1—N2—C5—C4	-172.85 (14)	C9—C10—C11—C6	0.8 (3)
C3—C4—C5—N1	-0.8 (3)	C7—C6—C11—C10	-1.1 (3)
C3—C4—C5—N2	-178.17 (17)	S1-C6-C11-C10	176.28 (14)
O2—S1—C6—C11	14.34 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N1—H1A···O1	0.82 (2)	2.01 (2)	2.694 (2)	141 (2)
N2—H2A···O4	0.81 (2)	2.02 (2)	2.808 (2)	165 (2)
C1—H1···O3 ⁱ	0.95	2.37	3.301 (3)	166
C3—H3···O5 ⁱⁱ	0.95	2.44	3.303 (3)	151
C7—H7···O4 ⁱⁱⁱ	0.95	2.53	3.417 (2)	156
C8—H8···O3 ⁱⁱⁱ	0.95	2.58	3.251 (3)	128

Symmetry codes: (i) *x*+1, *y*+1, *z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*+1, *y*, *z*.

